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It is established that in unsteady heat transfer from a stream of gas to a plate 
with insulated sections (heat flux sensors), the heat-transfer coefficient depends 
on the thermal head or on the rate of change of the heat flux. 

When it is necessary to study unsteady heat transfer of large surfaces without the pos- 
sibility of changing the temperature distribution arbitrarily, the method of local insulated 
sections may be useful. At insulated sections at specified places on the surface, heat trans- 
fer is studied for an arbitrarily varying temperatures of the sections and a fixed tempera- 
ture of the rest of the surface. The temperature of the sections can be measured by one of 
the methods of unsteady heat transfer [i]. 

The importance of the dimensions and thermophysical parameters of the bodies themselves 
in unsteady heat transfer was first pointed out in [i]. 

The characteristic features of unsteady heat transfer mentioned was investigated from 
various points of view in [2] and subsequent theoretical and experimental papers, and sum- 
marized in [3]. In the heating or cooling of bodies instantaneously moved into a fluid, or 
for a rapid change of boundary conditions, the heat-transfer coefficient is appreciably dif- 
ferent from its value in a quasi-steady state. 

The present article presents results of a theoretical and experimental study of heat 
transfer of an insulated section (as Bi§ on a flat plate which is rapidly introduced 
into a stream of hot gas. 

As the stream of gas moves from the main surface to an insulated section, the stepwise 
change in temperature of the surface leads to a change in the thermal boundary layer above 
it. Heat transfer at the surface of the section will depend on the heat-transfer conditions 
at the insulated section of the plate surface. 

For given heat-transfer conditions it is easy to obtain the solution of the boundary 

layer equations in the quasi-steady approximation for constant thermophysical characteristics 
of the stream and its temperature as it leaves the surface. The differential equations for 

the boundary layer are linear, and by using Duhamel's theorem, the solution is obtained as 
the sum of the solutions for an isothermal plate and a plate with an insulated section at 
which there is no heat transfer [4]. 

We consider laminar and turbulent boundary layers and the case of a turbulent layer when 
the surface of the section of the plate is small and the change of temperature in the bounda- 
ry layer occurs completely or mainly in the laminar sublayer. 

In the mathematical formulation of the problem we assume the following conditions: 

i) the dynamic turbulent boundary layer is developed directly from the leading edge of 
the plate; 

2) steady surface flow of fluid with constant properties; the fluid velocity is low; 
the dissipation of energy is neglected; 

3) the quasi-steady approximation is used for the thermal boundary layer; 

4) the Reynolds analogy is satisfied for the sublayer and turbulent region; 

5) a two-layer model of the dynamic turbulent boundary layer is used; 
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6) the solutions for laminar and turbulent layers are constructed in the same way be 
using momentum and energy integrals; the only difference is in the velocity and temperature 
distribution laws: parabolic for laminar flow; one-seventh power law for the velocity and 
temperature distributions in a turbulent layer; linear for the sublayer with a change in 
temperature in the sublayer only; the thickness of the whole boundary layer is determined 
from the momentum integral, with a one-seventh power law for the variation of velocity; 

7) the Blasius relation was used for a turbulent boundary layer; 

I 

8) the boundary conditions for the temperature of the surface vary in a stepwise manner; 
the temperature of the surface downstream from a step varies with time: 

T(x, A)=T~.;  T(x, O ) = T  w. 

For a power law variation of the temperature distribution over the thickness of a layer 

OT(x, A) _ 0  and OaT(x' 0) = 0 .  
Oy ay ~ 

Influence functions of the prehistory of the boundary layer [i -- (~/x)m] n, the thickness 
A of the thermal boundary layer, and the heat flux q to the section of the surface were de- 
termined from the solution. 

For the thermal boundary layer, which is completely contained with the laminar sublayer, 

influence functions were obtained for the initial unheated section , the thickness of the 
thermal boundary layer, and the heat flux for the section of the plate: 

, 

A 6,83Re-TS/SPr-l/3x(l ~)1/3 ---- -- , (2) 
x 

q=0 .141  ~ x  Re~/SPr~/3 ( 1 - -  ~-~--) 1 /3(To*~Tt~ (3) 

the heat flux for the isothermal insulated section 

q = 0,0295 -h Re~/~ Pr3/s 1 - -  5Re 7'/~ pr-4/15 Tw--  To 1 -- (Y| -- To). (4) 
x T~--To 

On the  b a s i s  of  the  e x p r e s s i o n s  o b t a i n e d ,  an a n a l y s i s  was made of  the  p o s s i b i l i t y  of  
realizing such conditions when the thermal boundary layer above the section of the surface 
is nearly or completely within the laminar sublayer. As a result, it was established that 
such a case did not occur in an air jet under the conditions of the experiment with the gas- 
dynamic equipment, since the insulated section of the plate surface close to the leading 
edge was rather large, and the thermal boundary layer increased rapidly. 

Here it is necessary to pay attention to the characteristics of the formulation of the 
problem. Equation (4) clearly will not hold at points very close to stepwise temperature 
changes. Thus, Eq. (4) shows that as the temperature step is approached the heat flux tends 
to infinity. This is accounted for by the assumption of the contact of two media with dif- 
ferent temperatures. To obtain a more accurate solution it is necessary first to take ac- 
count of the thermal conductivity of the insulated section of the surface, i.e.,to consider 
the adjoint problem, taking account of the propagation of heat in the fluid and the section 
in two directions. 
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Thus, for small sections of the surface far from the beginning of the boundary layer, 
analysis alone may be insufficient. In this case the relations obtained and the usual justifi 
cation for using the method of local sensors under specific conditions must be verified ex- 
perimentally. 

Solutions for laminar and developed turbulent boundary layers are easily obtained by 
this same scheme. The main difference will be in the assumed temperature and velocity dis- 
tribution laws and accordingly in the solutions of the integral equations. 

Detailed solutions are given in [4]. 

The solution obtained for the heat flux can be written in the general form 

q = A [ 1  T u ~  _ To B I (Too--To), (5) 

where for a laminar boundary layer 

L 
A = A L= 0.332 Re~/2 Pr'/3, (6) 

x 

B = B L =  [1--(---~x-)3/4] -~/4 (7) 

and for a turbulent boundary layer 

A:= A T = 0.0295 ~' Re]/5 pra/5, (8) 
x 

An expression can be obtained from Eq. (5) for the heat-transfer coefficient for a sec- 
tion of the surface with a time-varying temperature 

q - - A B + A ( 1 - - B )  ~o 
T.--Tw ~ (10) 

- - ,  ( i i )  

where ~o = T~-- T O , ~ = T| T w . 

Thus, the solution of the boundary layer equation in the quasi-steady approx~nation 
gives an inverse or hyperbolic variation of the heat-transfer coefficient with the tempera- 
ture difference #. If the temperature of a section of the surface T w and that of the rest 
of the surface To are equal, the heat-transfer coefficient will be equal to A, i.e., to its 
value under steady conditions for an isothermal plate. 

On the other hand, for small Blot numbers the heat-conduction equation for an insulated 
section of the surface has the form 

d~ 
cpR - ~  + ABO + A (1 - -  B) ~o = O, (12) 

and by using (i0) and (ii) its solution can be Written as 

o 1 I( oxp[ 
�9 %o B cpR (13) 
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Fig. i. Schematic diagram of experi- 
mental model. 

The heat flux is 

q('O ~oAexp [ AB ] 
= �9 �9 (14) 

cpR 

The above shows that the rate of heating of a section of the plate is determined by 
heat transfer from the stream, and the external data are controlling in this case. The quan- 
tity B characterizes the nonuniformity of the temperature distribution over the surface; its 
value as T § determines the limiting temperature of a section of the plate when 

B (1--~'o0) =1' or B-- 000~ (15) 

Equation (13) can be written in the dimensionless form 

0 o - - 0  = T w - - T o  _ 1 ( l _ e x p [ _ B i ,  Fo]~ ' (16) 
0o T . - - T o  B \ J 

where Bi' = BAR/X, and Fo = ax/R 2. 

Thus, the heating process for a section will be characterized by Bi'Fo, which is analo- 
gous to the homochronous number in which, in addition to the dimensionless time and the heat- 
transfer coefficient for an isothermal plate A, there enters the dimensionless quantity B 
which characterizes the variation of temperature with coordinate (or over the section) and 
takes account of the previous history of the development of the thermal boundary layer. 

The calculated results were compared with experimental data obtained with apparatus con- 
sisting mainly of a powerful three-phase alternating current electric arc heater in an air 
stream [5]. The diameter of the cross section of the jet at the channel jet where the tem- 
perature and velocity are constant was large enough for performing experiments with a model 
plate placed 5-10 mm from the exit of the stabilizing channel. The temperature in the jet 
core was T~ = 2700~ the velocity was u~ = 170 m/sec, and the pressure wasl abs. atm. 
The plate was 60 mm wide, the distance to the insulated section was ~ = 52 m~n, and x = 58 
mm (Fig. i). The surface temperature of the insulated section was assumed equal to the ini- 
tial temperature of the whole model To = 280~ By making a small ridge 0.2 mm high at the 
sharP edge of the plate, the boundary layer could be considered turbulent for the important 
characteristics of the flow from the very beginning of the plate. The heated insulated sec- 
tion was a cylinder of electrolytic copper 15 mm in diameter and 16.9 mm high. The surface 
of the section was insulated with a porcelain ring and asbestos cord, and the temperature 
was measured with Chromel--Copel thermocouples and recorded on an electronic potentiometer. 

The points in Fig. 2 represent measured values at the temperature of the insulated 
section of the plate, and the curve is a plot of Eq. (16). The value of A used in the cal- 
culation was determined from an experiment in the region where T w is equal or close to To, 
and where on the basis of Eq. (i0) its value is equal to the heat-transfer coefficient for 

flow along an isothermal plate. 

Figure 3 shows the relative heat-transfer coefficient ~/~o as a function of the dimen- 
sionless temperature@/~o, calculated by Eq. (i0). 
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Fig. 2. Theoretical and experimental time depen- 
dence ofthe temperature of a thermally insulated sec- 
tion of a plate in a stream of hot air; the points 
are experimental values, and the curve was calcu- 
lated from Eq. (16). 

Fig. 3. Relative heat-transfer coefficient ~/~o 
as a function of dimensionless temperature~/~o. 

The calculated and experimental variations of the temperature of the insulated section 
as a function of the time (Fo number) are in satisfactory agreement. Their difference at 
higher temperatures is apparently related to the increase in heat loss through the insulation, 
radiation, and a change in the thermophysical properties of the gas and the material of the 
section under study. 

The calculations show that even for a small rise in temperature of the section there is 
an appreciable change in its heat transfer with time; under our experimental conditions, as 
T +~ the change reached 23%, a value determined by the magnitude of B. 

Thus, in using insulated sections as heat flux sensors in stuying unsteady heat trans- 
fer of a surface, it is necessary to take account of the dependence of the heat-transfer 
coefficient on the temperature drop in both the calculations and formulation of experiments. 

NOTATION 

Bi, Biot number; %w, frictional shear stress at the wall; u~, velocity of incoming flow; 
v, kinematic viscosity; %, thermal conductivity; 0, density; ~T, thickness of turbulent 
boundary layer; x, running coordinate along surface of plate; 6, coordinate of beginning of 
thermally insulated section; Rex, local Reynolds number; Pr, Prandtl number; c, specific 
heat; a, thermal diffusivity; T, time; Fo, Fourier number; R, thickness of insulated section; 
To, initial temperature of thermally insulated section and temperature of plate surface; T~, 
temperature of incoming flow; Tw, temperature of thermally insulated section; So, heat-trans- 
fer coefficient corresponding to the beginning of the heating of the insulated section; ~, 
heat-transfer coefficient during the heating process; ~/~o, dimensionless temperature; A, 
local heat-transfer coefficient at isothermal surface; B, a quantity characterizing the tem- 
perature distribution over the surface of the plate. 
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